Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Environmental Health and Preventive Medicine ; : 3-3, 2023.
Artigo em Inglês | WPRIM | ID: wpr-971193

RESUMO

BACKGROUND@#Weather conditions are a possible contributing factor to age-related macular degeneration (AMD), a leading cause of irreversible loss of vision. The present study evaluated the joint effects of meteorological factors and fine particulate matter (PM2.5) on AMD.@*METHODS@#Data was extracted from a national cross-sectional survey conducted across 10 provinces in rural China. A total of 36,081 participants aged 40 and older were recruited. AMD was diagnosed clinically by slit-lamp ophthalmoscopy, fundus photography, and spectral domain optical coherence tomography (OCT). Meteorological data were calculated by European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis and were matched to participants' home addresses by latitude and longitude. Participants' individual PM2.5 exposure concentrations were calculated by a satellite-based model at a 1-km resolution level. Multivariable-adjusted logistic regression models paired with interaction analysis were performed to investigate the joint effects of meteorological factors and PM2.5 on AMD.@*RESULTS@#The prevalence of AMD in the study population was 2.6% (95% CI 2.42-2.76%). The average annual PM2.5 level during the study period was 63.1 ± 15.3 µg/m3. A significant positive association was detected between AMD and PM2.5 level, temperature (T), and relative humidity (RH), in both the independent and the combined effect models. For PM2.5, compared with the lowest quartile, the odds ratios (ORs) with 95% confidence intervals (CIs) across increasing quartiles were 0.828 (0.674,1.018), 1.105 (0.799,1.528), and 2.602 (1.516,4.468). Positive associations were observed between AMD and temperature, with ORs (95% CI) of 1.625 (1.059,2.494), 1.619 (1.026,2.553), and 3.276 (1.841,5.830), across increasing quartiles. In the interaction analysis, the estimated relative excess risk due to interaction (RERI) and the attributable proportion (AP) for combined atmospheric pressure and PM2.5 was 0.864 (0.586,1.141) and 1.180 (0.768,1.592), respectively, indicating a synergistic effect between PM2.5 and atmospheric pressure.@*CONCLUSIONS@#This study is among the first to characterize the coordinated effects of meteorological factors and PM2.5 on AMD. The findings warrant further investigation to elucidate the relationship between ambient environment and AMD.


Assuntos
Humanos , Adulto , Pessoa de Meia-Idade , Estudos Transversais , Poluentes Atmosféricos/análise , Material Particulado/análise , China/epidemiologia , Degeneração Macular/etiologia , Conceitos Meteorológicos
2.
Chinese Journal of Pediatrics ; (12): 37-42, 2016.
Artigo em Chinês | WPRIM | ID: wpr-351453

RESUMO

<p><b>OBJECTIVE</b>To explore the expression of CASZ1 and its relationship with the pulmonary microvascular development in lung tissue of newborn rats exposed to hyperoxia which induced bronchopulmonary dysplasia (BPD).</p><p><b>METHOD</b>Forty-eight newborn Sprague Dawley(SD) rats (male and female unlimited) were randomly divided into two groups: experimental group and control group according to random digits table with 24 in each.The rats in experimental group were exposed to high oxygen volume fraction of 800 ml/L and the rats in control group were exposed to normal air. Eight rats were randomly selected from each group on day 3 and 7 after oxygen exposure.The sections of lung were stained with HE method in order to assess lung histological changes, the alveolar development was evaluated by the number of radial alveolar count (RAC) and septal wall thickness. CD31 was detected by immunohistochemistry (IHC) method and the capillary density was calculated. The location, distribution and expression of CASZ1 in the lung tissue were detected by the immunohistochemistry, Western blotting, and quantitative PCR (qPCR).</p><p><b>RESULT</b>(1) Stained by HE, lungs of experimental group showed destroyed alveoli, alveoli fusion and increased septal wall thickness, RAC were significantly lower than those in control group(14 d: septal wall thickness (12.69 ± 0.63) μm vs. (6.53 ± 0.16) μm, RAC 5.9 ± 0.4 vs. 8.4 ± 1.0, t = 19.046, 4.760, P both = 0.000). (2) CD31 protein was expressed predominantly in cytoplasm of pulmonary microvascular endothelial cells. The experimental group CD31 average optical density (AIOD) were decreased compared with control group((16.6 ± 1.6) × 10(3) vs.(40.1 ± 2.4) × 10(3), (18.1 ± 1.4) × 10(3) vs.(83.2 ± 5.2) × 10(3), (49.2 ± 5.4) × 10(3) vs.(136.2 ± 28.1) × 10(3), t=16.185, 16.066 and 6.078, P<0.01 for all comparisons). Capillary density in experimental group was also significantly decreased compared with control group ((3.84 ± 0.15)% vs.(6.01 ± 0.22)%, (4.17 ± 0.38)% vs.(6.15 ± 0.24)%, (5.43 ± 0.44)% vs. (9.13 ± 0.25)%, t = 16.124, 8.773 and 14.076, P all < 0.01). (3)RT-qPCR and Western blotting showed that the CASZ1 mRNA significantly increased in experimental group compared with control group(0.56 ± 0.17 vs. 1.00 ± 0.26, 0.32 ± 0.29 vs. 0.58 ± 0.14, 0.14 ± 0.22 vs. 0.56 ± 0.15, t=3.890, 3.303 and 2.388, P < 0.05 for all comparisons), and the protein expression of CASZ1 also significantly increased in experimental group compared with control group (0.65 ± 0.02 vs. 0.78 ± 0.23, 0.46 ± 0.03 vs. 0.75 ± 0.05, 0.34 ± 0.22 vs. 0.75 ± 0.04, t=6.200 and 10.485 and 14.998, P < 0.05 for all comparisons). (4)The protein level of CASZ1 in experimental group was positively correlated with capillary density (r=0.519, P<0.01).</p><p><b>CONCLUSION</b>CASZ1 is involved in the whole process of newborn rats BPD and may be linked to pulmonary microvascular dysplasia.</p>


Assuntos
Animais , Feminino , Masculino , Ratos , Animais Recém-Nascidos , Displasia Broncopulmonar , Patologia , Hiperóxia , Patologia , Pulmão , Patologia , Oxigênio , Alvéolos Pulmonares , RNA Mensageiro , Metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Fatores de Transcrição , Metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA